Uso del SHOW PARTITIONS en Spark

Seguro que en alguna ocasión nos ha tocado hacer un SHOW PARTITIONS de una tabla HIVE particionada, con la finalidad (para quien no lo sepa) de obtener/visualizar las particiones existentes de los datos. Hasta aquí nada nuevo, pero lo que quiero mostrarles en esta oportunidad es un método (nada espectacular) que me ha servido mucho donde obtengo las particiones de una tabla (Hive) y los usos que le he dado al método, entre otras con grandes ventajas en performance.

Como seguramente muchos de ustedes saben si invocamos un SHOW PARTITIONS en spark por ejemplo en la spark-shell, esta nos devuelve un DataFrame con una única columna, como el siguiente ejemplo:

Con mi método lo que hago es transformar el DataFrame original en uno formateado donde cada variable de particionado es una columna. A continuación el método y el que sería el DataFrame resultante

Ahora ustedes se preguntarán y que hay de fascinante o interesante en este método. La verdad que el método en sí aporta poco es sencillamente una simple transformación pero para mí la magia reside en para que lo utilizo y es lo que les quiero contar.

Imaginen que la tabla que posee las 5 variables de partición (ni discutamos si es acertado poseer 5 variables de particionamiento) posee un sin fin de particiones y que a su vez para una misma ciudad en una misma fecha hay varias particiones por hora (como aparece en el ejemplo para la ciudad de Valencia) y cada partición a su vez tiene muchos registros. Con este supuesto si quisiéramos hacer una consulta para obtener la máxima partición (la más reciente) para una fecha, ciudad, estado y país en especifico podríamos llegar a tener problemas de TimeOut o SocketTimeOut ya que:
* El cluster se vería exigido intentando trabajar sobre las particiones pertinentes (debido al gran número de particiones).
* Una vez obtenidas las particiones cargar los datos desde HDFS y recorrer de forma innecesaria un conjunto de datos requiriendo mucho más memoria de la necesaria.

¿Recorrer de forma innecesaria?
Si, ya que recorreríamos un conjunto de registros donde muchos de esto compartirán el valor de la columna “hora” (partición) y apegándonoslos al ejemplo de arriba (la ciudad de Valencia) realmente los valores posibles serían 2:
* 1700
* 1750

Solución: Pues al obtener el DataFrame de particiones, si posteriormente filtramos por país, estado, ciudad y día solo nos quedarían 2 registros para el campo hora y sencillamente tendría que hallar el máximo valor de 2 registros en vez de tener que cargar datos de HDFS e iterar sobre todos estos.

¿Mucha más memoria de la necesaria?
Si, ya que al hacer un SHOW PARTITIONS, nosotros interactuamos con el metatstore y los metadatos en vez de trabajar con todos los datos de HDFS con todo lo que eso implica en cuanto a latencia, debido a la necesidad de ir a disco, etc.

¿Existe alguna otra ventaja de trabajar con el metastore?
Si, por ejemplo para hallar la máxima partición, trabajando únicamente con el DataFrame de particiones y una vez hallada la partición idónea, digamos que la más reciente, entonces construyo la consulta (muy especifica) indicando los valores de la partición deseada evitando esos errores de TimeOut haciendo uso eficiente de los recursos. De hecho yo lo que hecho es construir un WHERE dinámico (quizás lo comparto en la próxima entrada) a partir del DataFrame de particiones filtrado.

¿Se te ocurre otra ventaja de utilizar un método como este e interactuar con el metastore? ¿Habías hecho algo similar para tener mejoras de rendimiento y uso eficiente de recursos?

Espero que les sea de utilidad.

Primeros pasos con Apache Drill

¿Qué es apache drill?

Es un motor de consultas open-source para exploración de fuentes de datos con grandes volúmenes de datos. Apache drill nos permite realizar análisis de alto rendimiento sobre datos semiestructurados sin dejar de ofrecer la familiaridad y el ecosistema de la norma ANSI SQL. Apache drill a su vez posee integración con Hive y HBase.

Apache drill a menudo es comparado con Hive y con Impala, por su alto rendimiento por trabajar con ficheros .csv y .json, así como también porque por medio de estas podemos efectuar consultas en HBase, pero hay un aspecto donde drill sobresale y es que puede conectarse a otros gestores de bases de datos como por ejemplo MySQL y MongoDB.

¿Cómo conocí Apache drill?

Me topé con apache drill por casualidad en el 2015, debido a las circunstancias y dificultades con las que trabajábamos, teníamos ordenadores plataformas que no nos permitían instalar nada y como tarea teníamos que hacer cruce de información de grandes ficheros .csv con sistemas de bases de datos relacionales. Los ficheros .csv eran tan grandes que ni siquiera podíamos visualizarlos con excel ni con atom y apache drill termino siendo una herramienta estupenda para poder realizar exploración sobre los datos y eso que lo utilizamos en modo embebido en nuestro ordenadores.

Instalación

Apache drill tiene 2 tipos de instalación dependiendo si será en un cluster o si será en un único nodo, nosotros haremos la de un único nodo, la cual es muy sencilla ya que solo es necesario descomprimir el fichero descargado y ejecutar el  fichero ./drill-embebed el cual esta en la carpeta /bin de nuestra instalación.

Este último paso abrirá una consola donde podremos ejecutar sentencias sql y además se levantará un cliente web al que podremos acceder desde cualquier navegador en la ruta http://localhost:8047

apache drill web client

apache drill web client

Ahora vamos a empezar a jugar con drill, para ello crearemos un fichero json que denominaremos cliente_banco.json con los siguientes datos:

También crearemos un fichero csv con los datos de los clientes y lo llamaremos clientes.csv:

Ahora que empiece la diversión, lo primero que haremos será consultar los datos del fichero clientes.csv como si fuera una tabla con SQL utilizando el cliente Web de drill, para ello será necesario ir a la ruta http://localhost:8047/query

Una vez allí ejecutaremos la siguiente sentencia:

SELECT * FROM dfs.ruta_fichero/clientes.csv

resultado query csv en drill

resultado query csv en drill

El resultado no se puede apreciar muy bien además que se ve que asume la cabecera del fichero csv como si fuese un registro, para mejorar esto, será necesario hacer una pequeña modificación en la configuración. Apache drill funciona con plugins donde se almacena toda la configuración de las conexiones con ficheros del filesystem, de gestores de bases de datos, tipo mongoDB, MySQL, etc. por ende será necesario que editemos la configuración del plugin de filesystem para que tome en cuenta la cabecera del fichero csv (NOTA: Aquí también podríamos configurar el tipo de separador ya sea “,”o “;” o “|” entre otros).

Para realizar la actualización de la configuración deberemos ir a la ruta http://localhost:8047/storage y hacer clic en el botón “Update” del plugin dfs.

storage

storage

Allí veremos un json utilizado para la configuración y buscaremos el elemento “csv” dentro del objeto “formats” y le añadiremos el atributo “skipFirstLine”: true como se muestra en la siguiente imagen y procederemos a actualizar el plugin pulsando el botón “Update”.

configurando plugin dfs

configurando plugin dfs para que no tome en cuenta la primera linea del csv

Si intentamos de nuevo la consulta veremos como es obviada la cabecera del fichero csv, aunque aún no vemos el resultado como una tabla, para eso utilizaremos alias para identificar a cada columna al momento de efectuar la consulta de la siguiente forma:

SELECT columns[0] as ID, columns[1] as NOMBRE, columns[2] as APELLIDOS, columns[3] as PROVINCIA FROM dfs.ruta_fichero/clientes.csv

Obteniendo lo siguiente:

resultado de la consulta

resultado de la consulta

Vamos a profundizar aún más y ahora realizaremos un join entre los datos del fichero csv y del fichero json, ejecutando la siguiente consulta:

SELECT tablaCSV.columns[0] as ID, tablaCSV.columns[1] as NOMBRE, tablaCSV.columns[2] as APELLIDOS, tablaCSV.columns[3] as PROVINCIA, tablaJSON.BANCO FROM dfs.ruta_fichero/clientes.csv tablaCSV
LEFT JOIN dfs..ruta_fichero/cliente_banco.json tablaJSON
ON tablaCSV.columns[0] = tablaJSON.ID

Obteniendo:

resultado del left join

resultado del left join

Apache drill nos ofrece a su vez más posibilidades como por ejemplo crear tablas en formato parquet  a partir de un json o de un fichero csv. Apache drill es una herramienta que me gusta mucho pero también cuenta con algún aspecto a mejorar, por ejemplo me gustaría poder utilizar la cabecera de un fichero csv como nombre de columna al efectuar consultas y esto no funciona del todo bien, de hecho hice unas pruebas y fue así como me percate de este pequeño error que estoy seguro (y espero) se solucione pronto.

Para que la cabecera de un archivo csv sea tomada en cuenta como nombre de columna de una tabla es necesario modificar la configuración del plugin dfs, al igual que lo hicimos antes para que no tomase en cuenta la primera fila del archivo, editando el formato csv así como en la siguiente imagen.

config dfs plugin

configurando dfs plugin para que reconozca la cabecera de los ficheros csv

De nuevo repitamos la consulta que hacíamos al principio:

SELECT * FROM dfs.ruta_fichero/clientes.csv

Vemos como de inmediato sin haber utilizado alias en la consulta el resultado es devuelto como una tabla

Si ahora repetimos la consulta veremos como la salida de los resultados ha cambiado, dándonos una perspectiva de que tenemos una tabla, utilizando la cabecera del fichero csv como la cabecera de la tabla de resultados

consulta de todos los campos

consulta de todos los campos

Además al igual que con ejemplos anteriores podemos efectuar join con otras tablas independientemente en el formato o fuente que se encuentren (son, csv, parquet, mysql, etc…), el problema (o error) esta cuando intentamos consultar por un campo en especifico alguno puede que no devuelva nada como por ejemplo si efectuamos la siguiente consulta:

SELECT ID, NOMBRE FROM dfs.ruta_fichero/clientes.csv

consulta de ID y NOMBRE

consulta de ID y NOMBRE

 

Esto me pareció tan extraño que intente jugar con distintos parámetros de configuración e incluso con la forma de realizar la consulta y no pude solventar este comportamiento por lo que publiqué  este error en stackoverflow por si estaba haciendo algo mal y alguien podía echarme una mano.

No quiero que lo último los desanime a probar la herramienta ya que esta cuenta con muchas bondades que dan para redactar unas cuantas entradas más, espero que hayan podido seguir todos los ejemplos y tener una perspectiva de lo que podemos alcanzar con la herramienta.

ACTUALIZACIÓN 28-09-2016:

Al haber quedado con la inquietud del mal funcionamiento al ejecutar la consulta sobre el csv indicando como columnas la cabecera del fichero, me decidí a escribir a lista de usuarios de apache drill por si en dado caso me estaba topando con un bug (cosa extraña porque llevaría así al menos 3 releases) y ellos me han dado la respuesta, el problema estaba en el espacio en blanco inmediatamente después de la coma, por lo cual al reformular la consulta y hacerla de la siguiente manera funcionó a la perfección:

SELECT ID, ‘ NOMBRE’ FROM dfs.ruta_fichero/clientes.csv

Pero otra forma quizás más elegante aún es que se eliminase el espacio después de la coma en la cabecera del archivo csv, de esa manera  basta con que coloquemos los nombres de las columnas sin necesidad de encerrarlas entre comillas al momento de formular la consulta.

SELECT ID, NOMBRE FROM dfs.ruta_fichero/clientes.csv

Tablas en memoria en MySQL

Algunas semanas atrás en el trabajo nos topamos con un problema, realizábamos una consulta que consistía en hacer un join entre una tabla muy grande contra un par de tablas pequeñas que contenían únicamente descripciones. Como ustedes ha de imaginarse teníamos nuestra base de datos normalizada y para exportar los datos con el conjunto de descripciones era necesario realizar este cruce.

Para que la consulta fuese bien (que no arrojase un timeout en el mejor de los casos) habíamos agregado índices a las tablas secundarias (aquellas que contenían las descripciones) y la consulta de lograr ejecutarse llegó a tardar unos 25 segundos. Estas tablas eran de tipo InnoDB y los índices eran de tipo B-Tree (es el único tipo de índice para las tablas de tipo InnoDB). La consulta llegaba a tardar en el mejor de los casos (que no devolviese un timeout) 25 segundos. Es por esta razón que buscando una alternativa abordamos las tablas en memoria.

Las tablas en memoria son almacenadas en la memoria HEAP razón por la cual son tablas temporales ya que una vez se haya reiniciado o apagado la máquina estas perderán los datos, es decir se mantiene la estructura de la tabla mas no su contenido. Las tablas en memoria en MySQL pueden tener 2 tipos de índices B-Tree o Hash.

¿Cuando utilizar cada tipo de índice?

El índice B-Tree puede utilizarse con operadores del tipo =, >, >=, <, <= o BETWEEN, de igual manera puede ser usado con el operador LIKE, mientras que el índice Hash es usado únicamente para comparaciones de igualdad como =, >= o <=. Así que de realizar comparaciones de igualdad es recomendable utilizar el índice Hash ya que es muy rápido mientras que cuando se realicen comparaciones del tipo >, <, LIKE, BETWEEN u optimizar operaciones de ORDER BY la opción es utilizar B-Tree.

En nuestro caso únicamente realizábamos operaciones de igualdad ya que comparábamos en base a un código así que utilizamos índices de tipo Hash, obteniendo excelentes resultados, tanto es así que nunca llegamos a obtener un timeout y el tiempo de respuesta de nuestras consultas se redujeron a 5 segundos.

¿Cómo crear una tabla en memoria?

La creación de una tabla en memoria es muy sencilla, es igual a la creación de cualquier otra tabla del tipo InnoDB, lo único es sencillamente cambiar el tipo de “engine” e indicar “MEMORY”, por ejemplo:

Por último ¿Como hacer para que se carguen los datos de la tabla en memoria al arrancar?

Por muy tonto que parezca para nosotros esto era importante ya que nos asegurábamos de que de reiniciarse el ordenador (era windows :-s ) estando o no nosotros, las tablas en memoria estarían creadas y cualquier consulta que se efectuase no daría error. Para que la tabla en memoria se llene de datos al arrancar el servidor MySQL es bastante sencillo, lo único que debemos hacer es editar el fichero my.ini o my.cnf y debajo de donde dice [mysqld] agregar la siguiente linea

Donde script.sql tendrá las sentencias sql de inserción por ejemplo

Espero que esto les pueda servir para optimizar el consultas en base de datos o sencillamente resolver cualquier inconveniente.

¿Has trabajado antes con tablas en memoria? Compartirías con nosotros tu experiencia.

Usando regex para formatear SQL

En algunas ocasiones llegue a leer  de regex, también lo estudie (muy poco) para sacar la certificación SCJP y en rara ocasión utilizarlo para alguna validación, aunque sin dudarlo donde mas pude conocer de su potencial fue conversando con colegas de profesión.

En esta oportunidad quiero compartir con ustedes una solución que pude dar a un problema, agilizando (mucho) mi trabajo y facilitando lo que tenia que hacer.

El problema: Un script para la inserción de un gran numero de registros (aproximadamente por el orden de los 16000) que afectaba a varias tablas. Dicho script era producto de una exportación de una BD oracle, la exportación le otorgo a los valores de las fechas un formato especial de la forma {d ‘yyyy-mm-dd’}. Por ejemplo {d ‘2010-09-14’}.

Al ejecutar los script arrojaba un error, ademas de que el formato de la fecha en mi BD local era de la forma ‘dd-mm-yyyy’, entre las soluciones que me aconsejaban era utilizar un editor al estilo notepad++, ultraedit y de esta manera poder eliminar las llaves y la letra d, pero esto no solucionaba totalmente el problema ya que aun estaba de por medio el formato en el que estaba representada la fecha. Fue en ese momento que pensé regex y de toda su potencia y aunque no estaba seguro de que pudiese ser la solución sentí que tenia que darle un vistazo en detalle a las características que podría darme.

Después de visitar algunos sitios web, pude dar con lo que necesitaba y me dispuse a implementar una solución (java) para mi problema, que de antemano se que puede hacerse mas elegante e incluso por que no decirlo, implementarse mejor, pero el entusiasmo que tengo en compartirlo con ustedes hace que no me dedique a refinar mi programa, pero lo que mas deseo que evitar que algún colega tenga que editar 10000 INSERT.

Aquí les dejo el código

Como podrán ver la funcionalidad de este programa consiste en recibir 2 argumentos y en cuyo caso que no los reciba arrojar un mensaje de error. El primer argumento es la ruta donde esta ubicado el fichero SQL y el segundo argumento es el nombre del nuevo fichero SQL que habrá sido formateado.

La clave: El patron regex utilizado.

String patternStr = “\\{[d]\\s\\'(\\d{4})-(\\d{2})-(\\d{2})\\’\\}+”;

Tiene las siguientes características:

  • \\{      busca existe una llave “{“.
  • [d]      seguida de la letra d.
  • \\s      seguido de un espacio en blanco.
  • \\’      busca el carácter “‘” (comilla simple)
  • (\\d{4})-(\\d{2})-(\\d{2})     seguido de 4 dígitos más “-” seguido de 2 dígitos mas “-” y por ultimo 2 dígitos. Como podrán notar los dígitos aparecen dentro de paréntesis, esta es una particularidad de regex que nos permite hacer grupos y esto resulto fundamental para poder resolver el formato de la fecha.
  • \\’    busca el carácter “‘” (comilla simple).
  • \\}    busca el carácter “}”.
  • + Nos indica que al buscar este patrón, este puede aparecer en más de una oportunidad.

Por ultimo está la sentencia utilizada para llevar a cabo el reemplazo:

bos.write(line.replaceAll(patternStr, “‘$3-$2-$1′”)+”\n”);

Donde al hallar el patrón, es sustituido por el segundo parametro utilizado “‘$3-$2-$1′”, aqui enlazamos con los grupos definidos, ya que eso es a lo que hacen referencia las variables $, donde por ejemplo $1 significa el primer grupo definido  en el patrón que se corresponde con el año, $2 el mes y $3 el día.

Como pudieron ver regex no solo ha de ser utilizado para llevar a cabo validaciones sino que además nos permite utilizarlo para llevar a cabo funciones de formateo y a en mi caso me ahorro editar a mano 15000 registros o en el mejor de los casos hacer un programa Java muy rebuscado trabajando con cadenas.