Estadística simple con Spark V2

Sigo con mi pruebas con lo nuevo (y no tan nuevo de Spark 2), hoy comparto con ustedes una versión 2 de mi anterior post Estadística simple con Spark, pero en esta ocasión realizado con Spark 2.

¿Que tiene de nuevo esta versión?

Primeramente utiliza el módulo spark-csv lo cual nos hace más simple la carga del fichero en un Dataset. Segundo, que no manipulamos en ningún instante RDD alguno, sino que por el contrario estamos trabajando con DataFrames representados mediante la clase Dataset. Entre las cosas nuevas que contempla esta versión hecha en Spark 2 es que mientras antes al realizar un groupBy sobre un DataFrame esto nos devolvía un GroupedData ahora nos devuelve un RelationalGroupedData, esto debido a un cambio de nombre que se le ha dado a partir de esta nueva versión de Spark.

Esta nueva versión realizada con SparkSQL con Datasets tiene varias ventajas, la primera es simplicidad, es mucho mas simple, mas fácil de entender el código además de mas corto, de hecho con menos lineas obtuve más información que con la versión elaborada con RDD’s, es decir, es mas versátil. Por otro lado aunque hay que tener algo de nociones de conjuntos lo interesante es que esta versión esta libre de código SQL.

Sin más dilación he aquí el código y el enlace al proyecto en Github.

Para que comparen los resultados obtenidos aquí con respecto a la entrada anterior dejo un pantallazo de lo obtenido al ejecutarlo en mi local.

promedios por distrito

promedios por distrito

Otras agregaciones por distrito

Otras agregaciones por distrito

Total personas por distrito

Total personas por distrito

Primeros pasos con Apache Spark 2

Hace pocos días salió la esperada versión 2 de Apache Spark y como algunos de ustedes saben es un framework que ahora mismo atrae mucho mi atención y como no pudo ser de otra forma hice un pequeño proyecto donde quiero ir colocando ejemplos sencillos de Spark con las nuevas (y no tan nuevas) cosas de Spark.

Para empezar comentarles que yo todavía no he utilizado sbt sino por el contrario uso maven como herramienta de construcción de proyectos. He aquí los primeros cambios necesarios para trabajar con spark 2, las dependencias correspondientes a la versión (indicadas en el pom.xml).

Entre los nuevos cambios de spark está que el punto de entrada para los programas spark ya no serán el hiveContext o sqlContext sino que han sido subsumidas en una clase llamada SparkSession. Las clases HiveContext y SQLContext se han mantenido para proporcionar retrocompatibilidad. Ejemplo

Con el SparkSession haremos lo mismo que hacíamos con sqlContext por ejemplo obtener un Dataset

O por el contrario obtener un DataFrame

Otro punto importante ha sido la unificación de las clases Dataset y DataFrame (para Java y Scala) a partir de la versión 2.¿Qué significa esto? pues sencillamente que ahora solo existirá la clase Dataset, pero proporcionará la misma funcionalidad que nos daba la clase DataFrame, de hecho basta con comparar la API en la versión 1.6.2 y 2.0.0 y ver como los métodos de la clase DataFrame están ahora incluidos en la clase Dataset.

Dataset y Dataframe en Spark 2

Dataset y Dataframe en Spark 2

Aquellos interesados en leer más acerca de Dataset y Dataframe  visitar este link

Estos no son los únicos cambios en Spark, de hechos son muchos más, que se corresponden a optimizaciones a nivel de compilación y ejecución así como también a un nuevo parseador SQL, para leer mas acerca de lo nuevo en Spark 2 clic aquí.

Aqui les dejo en enlace al proyecto donde ire añadiendo clases y seguiré probando mas cosas nuevas de Spark.

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies